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Abstract

Purpose – The purpose of this paper is to study the effect of a computational grid in computational
fluid dynamics-based mathematical modeling, focusing on but not limiting the attention to
industrial-scale boilers.

Design/methodology/approach – A full boiler model is used to show the difficulties related to
judging iteration and discretization errors in boiler modeling. Then, a single jet is studied in detail to
determine the proper degree of local grid refinement required in the vicinity of jets in the full boiler
model. Both a nonreactive axisymmetric jet exhausting into a quiescent atmosphere and a reactive jet
exhausting into a crossfiow are studied.

Findings – Over two million computational cells are required for the grid-independent solution for a
single jet. Local grid refinement is shown to be a good option for improving the results consistently
without an excessive increase in the number of computational cells. Using relatively coarse grids of
tetrahedral cells with a finite-volume-based solver may cause serious errors in results, typically by
overpredicting the jet spreading rate and underpredicting the mean axial centerline velocity.
Relatively coarse grids of hexahedral cells are less prone to error in a case where a jet exhausts into a
quiescent atmosphere. However, their performance deteriorates when a crossfiow is introduced. As
assumed, the differences in the predicted reaction rate and species concentrations are significant in the
reactive case. It is confirmed that the standard k-1 model tends to overpredict the axisymmetric jet
spreading rate. The estimated inlet turbulence intensity is not among the most critical factors in
modeling. Estimations of the axisymmetric jet centerline velocity from the analytical correlation may
not coincide with the modeling results.

Practical implications – The error caused by the computational grid may easily dominate the
errors caused by simplifying models used in industrial-scale boiler modeling (turbulence, combustion,
radiative heat transfer, etc.).

Originality/value – The present study deals with grid independency issues in industrial-scale boiler
modeling in a systematic and profound manner.
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Paper type Research paper

1. Introduction
The computational grid is one of the most important factors affecting the accuracy of
computational fluid dynamics (CFD) modeling. It can be argued that due to the lack of
sufficient computational capacity the grids nowadays used to describe industrial-scale
boilers are always too coarse, which further stresses the importance of a good quality
grid. Nevertheless, the computational grid has not always received the attention it
deserves in the industrial-scale boiler modeling community. In fact, in many studies
grid independency has not been assessed at all, or it has been assessed
nonsystematically or in insufficient detail. Moreover, in some studies the conclusion
“reasonably grid-independent solution” has been drawn somewhat hastily.
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According to Ferziger and Peric (1999, p. 331), many tests intended to determine model
validity have proven inconclusive because the numerical errors were greater than the
effects of the model. Lockwood et al. (2001, p. 5) point out that the worst predictive
discrepancies in combustion modeling are often due to numerical inaccuracies, although
it is fashionable to put all the blame on the submodels. The scarcity of grid independency
studies is probably due to the additional work and computer time required for
performing the grid independency analysis. The boiler geometries are typically highly
complex, and building a good-quality grid can be an extremely laborious task.

When the effect of grid refinement has been studied at least in some detail, it has
been shown to affect results significantly (Hill and Smoot, 2000; Gillis and Smith, 1990;
Coelho and Carvalho, 1996; Weber et al., 1993; Stopford, 2002; Pokela and Huttunen,
2005). Hill and Smoot (2000, p. 450) showed significant discrepancies in predicted nitric
oxide profiles in an industrial-scale coal-fired boiler between two grids with 192,000
and 337,000 computational cells. At most locations the predictions based on the finer
grid agreed better with the experimental data. Gillis and Smith (1990) concluded that
more than 250,000 cells are required to obtain grid independency in complex industrial
furnace flows. Weber et al. (1993) demonstrate the necessity of applying dense grids if
turbulence models are to be assessed. According to Pokela and Huttunen (2005), the
number of tetrahedral cells required is approximately twice the number of hexahedral
cells necessary to obtain the same accuracy in boiler modeling. Karvinen and Ahlstedt
(2005) observed the same trend for a single jet in crossflow. They also showed that to
achieve strict grid independency of all variables in their case requires several hundreds
of thousands of cells. Karvinen et al. (2006) showed that frequently grid densities
typical of industrial boiler modeling are not sufficient. Weber et al. (1993) and Karvinen
et al. (2006) both conclude that with the grid densities used in industrial boilers the grid
refinement is more essential for results than the turbulence model used.

2. Computational errors
The iteration error is the difference between the exact and the iterative solutions of the
discretized equations. The truncation error of the Taylor series expansion acts as a
source of the discretization error, which is the difference between the exact solution of
the mathematical model and the exact solution of the discretized equations. The
modeling error is the difference between the real flow and the exact solution of the
mathematical model. When validating the CFD results, the errors should be estimated
starting from the iteration error, then the discretization error should be studied, and
finally the modeling error (Ferziger and Peric, 1999; Casey and Wintergerste, 2000).
The iteration and discretization errors should be small compared to the experimental
uncertainty, because this is the only way that the effect of a model or of boundary
conditions on the results can be assessed (Ferziger and Peric, 1999, p. 322).

The quality of the grid affects both the accuracy and the convergence rate of the
solution (Ferziger and Peric, 1999; White, 2006). In particular, highly distorted
computational cells may seriously impede convergence (Lockwood et al., 2001; Casey
and Wintergerste, 2000). The accuracy of finite-volume methods is improved when the
line connecting two neighboring control volume centers firstly passes through the
center of the common face and secondly is orthogonal to the common face (Ferziger and
Peric, 1999). If the flow is oblique to the grid, numerical error increases, and peaks or
rapid variations in the variables will be smoothed out. The use of hexahedral cells is
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attractive because the grid lines may be kept at least partially aligned with streamlines,
thus reducing numerical error, whereas with tetrahedral cells no organized grid line
directions exist. Dispersion (diffusion) errors dominate in the convective transport
equations, whereas amplitude errors are significant in the diffusive transport
equations. These sources of errors are discussed in more detail, e.g. in Chung (2002).

3. Turbulent jets and computational fluid dynamics
The mixing of jets is one of the most important factors affecting combustion efficiency
and emissions in industrial-scale boilers. For example, with the commonly used nitric
oxide reduction method, called selective noncatalytic reduction (Miller and Bowman,
1989), the ammonia jets should provide a sufficient depth of penetration into the boiler
bulk flow and a good mixing with combustion products. These factors can be
controlled by jet parameters such as jet diameter, momentum, injection location,
number of jets, and nozzle design (Weber et al., 1998). In the following, a brief summary
of turbulent axisymmetric jets is provided.

After the initial development region, turbulent axisymmetric jets exhausting into a
quiescent atmosphere reach self-similarity, spreading and decaying linearly in the
downstream direction. The mean velocity becomes self-similar approximately at
x/d ¼ 20 (White, 2006, p. 479) or at x/d ¼ 30 (Pope, 2000, p. 98), where x is the axial
distance from the jet inlet and d is the jet inlet diameter. The turbulence components
take longer to develop; turbulent fluctuations become self-similar at x/d ¼ 50-70, and
isotropic turbulence is not yet reached even at x/d ¼ 100 (White, 2006, p. 479). The
mean velocity profile and the spreading rate are traditionally assumed independent of
Reynolds number, Re, whereas the small-scale turbulent structures become smaller at
larger Re. Surrounding fluid is entrained into the jet during the bursts of turbulent
activity at the edge of the jet.

An analytical solution for the axisymmetric jet centerline velocity, uc, can be written
in the isothermal case as (Hussein et al., 1994; Panchapakesan and Lumley, 1993;
White, 2006; Pope, 2000):

ucðxÞ

u0
¼

Bd

x2 x0
; ð1Þ

where u0, d, B, and x0 are the velocity at the jet inlet, the jet inlet diameter, an
experimental velocity-decay constant, and the virtual origin (the point from which the
self-similar region seems to grow, see, e.g. White (2006, p. 475)), respectively.

The standard k-1 model is known to overpredict the round jet spreading rate by
25-40 percent (Wilcox, 1998, p. 137). Modifications have been suggested in the
literature to remove round jet anomaly from the standard k-1 model, one of the which is
the model of Shih et al. (1995) used in the present study. This model has been shown to
be superior to the standard k-1 model in round jet predictions (Shih et al., 1995), but it
has also been shown not to be superior to the standard k-1 model in the case of round
jet in crossflow (Karvinen and Ahlstedt, 2005).

When a jet penetrates into crossflow instead of quiescent atmosphere, very complex
flow structures will develop, see, e.g. Andreopoulos and Rodi (1984). Weber et al. (1998)
studied the penetration and mixing of reburn jets in boilers. They showed that the
discrepancy between the available jet trajectory correlations is great for a jet in
crossflow, and the predictions are strongly dependent on the conditions in question.
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Weber et al. (1998) also showed that the penetration depth of each jet is sensitive to
local flow conditions prevailing upstream of the injection position, and thus a good
knowledge of the overall flow pattern is required within the boiler.

4. Description of modeled cases and grid refinement
First, a full boiler geometry is studied in order to show the difficulties related to
judging the iteration and discretization errors in boiler modeling. In the second stage, a
single jet is studied in considerable detail to discover the required degree of local grid
refinement (solution-adaptive gridding) for the full boiler grid.

In the present study, small ammonia injection jets applied in the selective
noncatalytic reduction are subjected to examination. It must be realized that there is a
huge discrepancy in scale between the small jets (inlet diameter d ¼ 42.5 mm) and the
full boiler (depth 6 m, width 8 m, height 18 m) and that there may be up to 20 ammonia
injections in a real boiler, the facts which limit the increase in the number of cells that
can be feasible per one jet. Both grids consisting of hexahedral (six faces and eight
vertices) and of tetrahedral (four faces and four vertices) cells are applied in order to
compare their performances. All the cases are modeled in 3D.

4.1 Full boiler
Four grids of hexahedral cells of a full boiler geometry are studied in a reactive flow
case. The boiler studied is a bubbling fluidized bed boiler. A detailed description of the
case and boundary conditions can be found elsewhere (Saario and Oksanen, 2007).

4.1.1 Grid refinement in full boiler. Grid nodes in each direction should be in
principle doubled in a grid refinement study. However, a reasonable study can be
performed with a lesser increment; it has been suggested that 50 percent (Ferziger and
Peric, 1999, p. 316) or even only 10 percent (Roache, 1994, p. 409) more nodes in each
direction than in the original grid is sufficient. If the grid is not refined sufficiently, the
results of a grid refinement study may be obscured by other error sources, such as
iterative error or machine round-off error (Roache, 1994).

In the full boiler study, a grid with approximately 100,000 hexahedral cells is
systematically refined three times, resulting in four different grids of hexahedral cells
which are summarized in Table I.

The computational grid of a full boiler consisting of 256,654 cells and an
enlargement of the vicinity of a single ammonia jet are shown in Figure 1. The grid is
built somewhat denser near the ammonia jets. The area downstream of the boiler
bull-nose level does not affect the results significantly, and hence larger computational
cells are used there. Attention is paid to keeping the cell edge ratio (maximum edge
length/minimum edge length) reasonably small, as well as to changing the grid
spacing continuously. At every step the grid is refined by approximately 25 percent in
each direction. The grid topology and the relative spatial density of grid points are

Grid of hexahedral cells Total number of cells

Very coarse 100,857
Coarse 256,654
Medium 543,719
Dense 1,083,117

Table I.
Grids of hexahedral cells
used in full boiler
modeling
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retained as unchanged as possible on all the grid levels. Creating these four different
good-quality grids consisting of hexahedral cells throughout the boiler required a
considerable amount of work. In contrast, the generation of grids consisting of
tetrahedral cells is easy to automate, which is one of the reasons for their popularity.

4.2 Nonreactive axisymmetric jet exhausting into quiescent atmosphere
A single axisymmetric jet exhausting into a quiescent isothermal (T ¼ 440 K)
atmosphere is studied. The inlet velocity of the jet is high, u0 ¼ 115 m/s, and Re is of
order 140,000. The jet momentum is kept constant with respect to the case with the full
boiler. It is reasonable to assume that the same grid resolution and the use of the same
models will produce similar discretization and modeling errors in both the single jet
case and the full boiler case.

A large rectangular enclosure (12 £ 6 £ 6 m) is modeled to study the single jet. To
exclude the effect of boundaries, only the side of the rectangular volume that the jet
comes from is defined as a wall, whereas all the other sides are defined as open outlets
with a specified pressure. Most of the computational cells are placed in the vicinity of
the jet inlet and following the direction of axisymmetric jet penetration and
consequently towards the outer part the enclosure is covered with a coarse grid. In the
vicinity of the ammonia jet, the baseline single jet grid of hexahedral cells is built to
closely resemble the full boiler grid with 256,654 cells. The jet inlet pipe is not modeled,
but a plug-flow type velocity profile is provided at the inlet. In order to be able to build
a good-quality grid using hexahedral cells, the real round jet inlets are replaced by
square inlets in all grids used in the present study. These simplifications do not affect
the overall outcome of the grid dependency study. The dimensions of square inlets are
chosen such that the jet momentum remains unaltered. The findings of the present
study show that the jet velocity contours are almost fully axisymmetric already at

Figure 1.
Computational grid in full

boiler model
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x/d ¼ 5 (x is the axial distance from the jet inlet and d is the jet inlet diameter)
regardless of the square inlet approximation.

4.2.1 Local grid refinement in nonreactive axisymmetric jet. It is important to refine
the grid where the gradients of solved quantities are large and where the reactions
take place, such as in jet shear layers. Here, the local grid refinement is based either on
the magnitude of turbulence kinetic energy or on the gradient of velocity magnitude.
The grids of hexahedral cells are locally refined by applying nonconformal adaption
which subdivides each cell isotropically, allowing “hanging” nodes, see Chung (2002)
and Murthy and Mathur (2001). Refining a single 3D hexahedral cell results in seven
new cells, i.e. eight cells are created in total. The number of cells is increased by 3,444
between successive refinements. This rather low number is understandable, keeping in
mind that we must apply the corresponding refinement for all jets in the full boiler
model. For the same reason, the jet inlet was represented by only four cells in the
baseline grid of hexahedral cells. The number of cells at the inlet increases quickly
when the grids are refined. The grids of hexahedral cells used in a single jet refinement
study are summarized in Table II, and a few of them are shown in Figure 2(a)-2(c).

Table III summarizes the properties of the differently generated grids of tetrahedral
cells, and grid I of tetrahedral cells is shown in Figure 2(d). All grids of tetrahedral cells
are built by creating first a straight line along the axisymmetric jet centerline from
which the cell size is gradually increased in the radial direction (Figure 2(d) and
Table III).

Finally, the single jet cases are calculated also with extremely dense grids, using
both grids of hexahedral and tetrahedral cells (Tables II and III).

4.3 Reactive jet exhausting into crossflow
Since the ammonia jets in a real boiler encounter a hot crossflow, a few cases
corresponding to such conditions are studied as well. The case description in Section 4.2
applies to the crossflow case also, unless stated otherwise in the present section.
The velocity and the temperature of the crossflow are set at 3 m/s and 1,200 K,
respectively, which closely correspond to the conditions in real boilers. The gas
concentration in the crossflow corresponds to the conditions typical of the SNCR
process (given in detail in Saario and Oksanen, 2007). The resulting jet to crossflow
velocity ratio is 38, which indicates a rather weak crossflow. The concentration of
ammonia in the jet is set at 0.66 vol.% and the rest is air. The left and right side
boundaries, as well as the boundary opposite the wall that the jet comes from, are
defined as symmetry boundaries instead of as open outlets. The heat flux is set at zero
on the wall that the jet comes from.

4.3.1 Local grid refinement in reactive jet in crossflow. The baseline, dense, and very
dense grids of hexahedral cells are the same as in the axisymmetric case (Table II). The
local grid refinement is based on the gradient of velocity magnitude; otherwise the local
grid refinement procedure is similar to that described in Section 4.2.1. The details
related to the refined grids in the crossflow case are given in the last section of Table II.
Of grids I-V of tetrahedral cells summarized in Table III, the grid which turned out to
be the best in the axisymmetric case, i.e. grid I, is used in the crossflow case. The dense
grid of tetrahedral cells in Table III is the same as in the axisymmetric case.
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Figure 2.
Single jet modeling
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(a) Baseline grid of hexahedral cells (102,524 cells)

(b) Grid of hexahedral cells after 3rd
refinement based on k (112,856 cells)

(c) Grid of hexahedral cells after 3rd
refinement based on ∂U / ∂xi (112,856 cells)

(d) Grid I of tetrahedral cells after (73,994 cells)

Notes: Grids at plane cutting jet axis. See Table II for 
Figures 2(a)-(c) and Table III for Figure 2(d). Symbol d is 
jet inlet diameter (42.5 mm)
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5. Mathematical modeling
Assuming incompressible steady-state flow, the Favre-averaged (Poinsot and
Veynante, 2005, pp. 140-2) continuity and momentum equations can be written as:

›

›xi
ð �r~uiÞ ¼ 0; ð2Þ

›

›xi
ð �r~uj ~uiÞ ¼

›�p

›xi
þ

›

›xj
m

›~ui
›xj

þ
›~uj
›xi

2
2

3
dij

›~ul
›xl

� �� �
þ �rgi þ

›

›xj
ð2 �r

~
u00i u

00
j Þ; ð3Þ

where r is density, ui is the ith component of the velocity vector, p is pressure, m is
viscosity, dij is the Kronecker delta, gi is the ith component of the gravitational vector,
and 2 �r

~
u00i u

00
j is the component of the Reynolds stress tensor. The overbar denotes

time-averaging, the tilde denotes Favre-averaging, and the double prime denotes the
Favre-averaged fluctuating part.

A part of the grid dependency study is carried out using reactive cases, which require a
conservation equation also for energy and equations for the species transport. Moreover,
additional sub-models are required. The reactions of ammonia and nitric oxide are modeled
using a global mechanism of Duo et al. (1992). The turbulence-chemistry interaction is
modeled using the eddy dissipation concept of Ertesvag and Magnussen (2000). The
finite-volume method (Raithby and Chui, 1990) together with the weighted sum of grey
gases model (Smith et al., 1982) are used to model radiative heat transfer. For details on the
modeling of the reactive cases the reader is referred to Saario and Oksanen (2007).

5.1 Turbulence modeling
The Reynolds stresses, 2 �r

~
u00i u

00
j , are modeled using widely applied two-equation

turbulence models, namely the standard k-1 model (Launder and Spalding, 1972;
Launder and Sharma, 1974) and its modification by Shih et al. (1995). Reynolds stresses
are modeled by invoking the Boussinesq hypothesis, which represents turbulence as an
increased viscosity assuming an analogy between the action of viscous stresses and
Reynolds stresses on the mean flow:

2 �r
~

u00i u
00
j ¼ mt

›~ui
›xj

þ
›~uj
›xi

� �
2

2

3
mt

›~ul
›xl

dij 2
2

3
�rkdij: ð4Þ

In the above equation, k is the turbulence kinetic energy and mt is the turbulent
viscosity defined as:

Grid of
tetrahedral
cells

Total number
of cells

Total number
of nodes

Number
of cells

at jet inlet

Initial cell size
at jet

centerline

Cell size growth
rate from

jet centerline

I 73,994 13,237 14 0.71d 1.45
II 74,306 13,273 14 0.59d 1.46
III 74,526 13,302 14 2.31d 1.20
IV 74,006 13,230 2 0.89d 1.39
V 73,997 13,225 2 0.59d 1.46
Dense 2,067,513 348,794 100 0.12d 1.11

Note: Symbol d is jet inlet diameter (42.5 mm)

Table III.
Grids of tetrahedral cells

used in single jet
modeling
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mt ¼ Cm �r
k 2

1
; ð5Þ

where Cm is a model constant and 1 stands for the dissipation of turbulence kinetic
energy. The transport equation for k is written as:

›

›xi
ð �r~uikÞ ¼

›

›xi
mþ

mt

sk

� �
›k

›xi

� �
2 �r

~
u00i u

00
j

›~uj
›xi

2 gi
mt

�rPrt

› �r

›xi
2 �r1; ð6Þ

where the term on the left-hand side represents the convective transfer of k. The first,
second, third, and fourth term on the right-hand side represent the diffusive transfer of
k, the production of k due to the mean velocity gradients, the production of k due to
buoyancy, and the dissipation of k, respectively. Prt is the turbulent Prandtl number set
at 0.7. The equation for e is empirical instead of being based on exact derivation (Pope,
2000, p. 375), and it is the weakest part of two-equation models (White, 2006, p. 471).
The following equation for e is applied (the standard k-1 model):

›

›xi
ð �r~ui1Þ ¼

›

›xi
mþ

mt

s1

� �
›1

›xi

� �
2 C1

1

k
�r

~
u00i u

00
j

›~uj
›xi

2 C2 �r
1 2

k
; ð7Þ

where the term on the left-hand side represents the convective transfer of 1. The first,
second, and third term on the right-hand side represent the diffusive transfer of 1,
the production of 1, and the dissipation of 1, respectively. The model constants in
equations (5)-(7) are based on Launder and Sharma (1974): Cm ¼ 0.09, sk ¼ 1.0,
s1 ¼ 1.3, C1 ¼ 1.44, and C2 ¼ 1.92.

In the k-1 model of Shih et al. (1995), equation (6) for k remains unchanged.
The 1 equation formulation is based on the equation of the mean-square vorticity
fluctuation and reads:

›

›xi
ð �r~ui1Þ ¼

›

›xi
mþ

mt

s1

� �
›1

›xi

� �
2 C1 �rS12 C2 �r

1 2

kþ
ffiffiffiffiffi
v1

p : ð8Þ

The main difference with respect to the standard k-1 model dissipation equation
(equation (7)) is the production term. C1 in equation (8) is a variable defined as:

C1 ¼ max 0:43;
Sk=1

5 þ Sk=1

� �
; ð9Þ

where S stands for the mean strain rate defined by the following two expressions:

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
; Sij ¼

1

2

›~ui
›xj

þ
›~uj
›xi

� �
: ð10Þ

In addition to the differences in the 1 equation, Cm in equation (5) is no longer constant,
but is made variable based on the realizability conditions (Shih et al., 1995):

Cm ¼
1

A0 þ Asm* k
1

: ð11Þ

Constant A0 was set at 4.04, and the parameter As ¼
ffiffiffi
6

p
cosf, where:
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f ¼
1

3
cos21

ffiffiffi
6

p SijSjkSkiffiffiffiffiffiffiffiffiffiffi
SijSij

p� 	3

 !
: ð12Þ

In equation (11) u* is defined by the following expressions:

u
*
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SijSij þ ~Vij

~Vij

q
; ~Vij ¼ Vij ¼ �Vij 2 1ijkvk; ð13Þ

where 1ijk is the alternating symbol (Levi-Civita symbol) and �Vij is the mean rotation
rate viewed in a rotating reference frame with the angular velocity vk. According to
Shih et al. (1995), their definition corresponds better to the experimentally observed
values of Cm in a variety of flows. The remaining model constants were calibrated with
respect to basic flow configurations: sk ¼ 1.0, s1 ¼ 1.2, and C2 ¼ 1.9.

The turbulence intensity at the jet inlet, I, is calculated as follows:

I ¼
u0

u0
¼ 0:16ðRedÞ

21=8; ð14Þ

where u0 is the fluctuating velocity, u0 is the jet inlet velocity, and d denotes the jet inlet
(hydraulic) diameter. The turbulence kinetic energy, k, and its dissipation, 1, at the jet
inlet are obtained from the following relations:

k ¼
3

2
ðu0I Þ

2; 1 ¼ C3=4
m

k 3=4

d
: ð15Þ

5.2 Numerical solution
Although frequently not referred to in industrial combustion modeling, it is generally
known that the chosen numerical scheme may have a significant influence on predictions.
This fact is supported by the authors’ own experience and has also been demonstrated in
Knaus et al. (2001). In the present study, a commercial finite-volume-based CFD solver
Fluent Inc. (2005) is used to solve discretized equations. There are two advantageous
features in finite-volume methods: physically, the conservation of mass, momentum, and
energy is assured in the formulation itself and, numerically, unstructured grids and
arbitrary geometries are accommodated without coordinate transformation (Chung, 2002,
p. 239). Fluent applies an unstructured grid solver, which cannot exploit all the benefits
related to grids of hexahedral cells.

The discretized equations are solved using the Gauss-Seidel method together with
the algebraic multigrid approach. The pressure field is calculated from the continuity
equation using the SIMPLE algorithm. The discretization of convective terms is
performed applying a second-order accurate upwinding scheme. The values at the
faces of computational cells, ~ff are obtained from (Murthy and Mathur, 2001):

~ff ¼ ~f0 þ
› ~f

›xi
·Ds; ð16Þ

where ~f0 is the cell center value in the upstream cell and s is the displacement vector
from the upstream cell center to the face. A second-order central difference
discretization scheme is used for the diffusion terms. The gradient › ~f=›xi in the
diffusion terms, as well as in equation (16), is defined using the Gauss theorem:
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› ~f

›xi
¼

1

V

XF
f¼1

~ff ;2Af ; ð17Þ

where subscript f denotes face, Af is the cell face area, and F is the number of faces
enclosing the cell. In equation (17), ~ff ;2 is computed from:

~ff ;2 ¼
1

N

XN
n¼1

~fn; ð18Þ

where N is the number of nodes on the face, subscript n denotes node, and the nodal
values ~fn are constructed from the weighted average of the cell center values
surrounding the nodes. The pressure at the face of the computational cell is obtained
using linear interpolation between adjacent cell center values.

6. Results and discussion
6.1 Full boiler
Obtaining a strictly converged and stabilized steady solution in industrial boiler
modeling is sometimes difficult, which may be due to the complicated system of
equations and models. Hence, it is of importance to try to assess the magnitude
of iteration error. The iteration error and the grid dependency of the full boiler model
are studied by plotting the vertical velocity component, uz, along line A located at:
x ¼ 4.6 m, z ¼ 8.0 m (Figure 1(a)).

Figure 3(a) shows that the iteration error has not been completely removed from the
solution. Here, the under-relaxation factors are set at very low values (below 0.01).

The results differ clearly with different grids, as shown in Figure 3(b). A consistent
trend as a function of refined grids cannot be observed. Partially this may be attributed
to the fact that all grids, including the dense one, are still rather coarse, considering the
huge size of the industrial boiler. Although the iteration error in Figure 3(a) seems
smaller than the discretization error in Figure 3(b), the iteration error nevertheless is
great enough to render the interpretation of results in Figure 3(b) difficult. Moreover,
as a result of the iteration and the discretization errors, it is difficult to judge any errors
related to the submodels.

6.2 Nonreactive axisymmetric jet exhausting into quiescent atmosphere
The geometry and conditions of the nonreactive axisymmetric jet were summarized in
Section 4.2. The grids applied were summarized in Tables II and III, and some of them
were shown in Figure 2. Dimensionless mean axial velocity or dimensionless
turbulence kinetic energy are plotted in the following figures, where u, d, x, and r are
the mean axial velocity, the jet inlet diameter, the axial distance from the jet inlet,
and the radial distance from the jet centerline, respectively, and subscripts 0 and c
denote the inlet value and the centerline value, respectively. Let us recall that the
modeled jet exhausts into free surroundings (no confining walls). All the results shown
below are free of iteration error.

Figures 4 and 5 show that the predictions obtained with the dense grid consisting of
2,067,424 hexahedral cells are not yet perfectly grid-independent (recall that although
most of the cells are packed in the jet-like part of the flow, a great number of cells are
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still located outside the actual jet). Slight differences can be observed when the
predictions of the dense grid are compared with those of the very dense grid of
4,264,650 hexahedral cells. The difference in predictions between dense and very dense
grids is rather moderate, and consequently the predictions obtained with the very
dense grid can be assumed to approach the grid-independent solution.

In general, a consistent improvement can be observed in predictions in cases where
the grid is refined locally several times (Figures 4 and 5). However, it must be noted

Figure 3.
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that, depending on the chosen location for presenting the results, the predictions
obtained with the baseline grid may even look better than those after the first
refinement. Comparing Figures 4(a) and 4(b) shows that the percentual error in the
predictions is greater for the turbulence kinetic energy than for the mean axial velocity.
This fact is relevant from the point of view of several turbulence-chemistry interaction
models in which k directly enters the reaction rate expressions. Figure 4 shows that
both u and k are overpredicted near the jet centerline when coarse grids of hexahedral

Figure 4.
Effect of local grid
refinement with grids of
hexahedral cells at
x/d ¼ 30
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cells are used. It is also observed that the third local grid refinement does not improve
significantly the predictions obtained after two local grid refinements.

Analytically calculated centerline velocity, uc, (using x0 ¼ 4 andB ¼ 5.8 in equation (1)
on the basis of experiments of Hussein et al. (1994, p. 44)) is included in Figure 5(b) in
order to assess the possibility of approximating uc without computer modeling. The jet
inlet parameters (d, u0, and Re) are roughly twice as large in the present study
compared to those in Hussein et al. (1994, p. 34), in other words they are of the same
order in both studies. Moreover, the modeled inlet velocity profile is of plug-flow type,
which is nearly the case also in measurements (Hussein et al., 1994, p. 34).

Figure 5.
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Here, the analytical solution is found to give greater values for uc than the modeling.
This may partially be due to the constants x0 and B, for which different studies have
proposed somewhat different values (Pope, 2000, p. 101; Panchapakesan and Lumley,
1993, p. 204), and also the jet inlet profile and Re might affect x0 and B (Hussein et al.,
1994, pp. 33, 42). Smaller values of x0 and B would have given a closer match between
the analytical solution and the CFD predictions. The difference in the inlet turbulence
intensity in measurements and modeling as well as the effect of turbulence models and
turbulence anisotropy (not taken into account by k-1 models) may contribute to the
observed discrepancy. The trend of mean axial velocity decay is reasonably similar in
both the modeling and the analytical solution, although estimating uc here on the basis
of the analytical solution leads to a different result than on the basis of modeling.

Although the turbulence kinetic energy and the velocity gradient are closely
interconnected through the production term in equation (6), the grids are clearly
different depending on whether the local grid refinement is based on k or ›U/›xi
(Figure 2(b) and 2(c)). Figure 6 shows that also the corresponding predictions are
different. In both cases the predictions improve consistently when the grid is refined,
and the already mentioned observation of negligible improvement after the third local
grid refinement is confirmed as well. The number of cells at the inlet increases more
quickly when the refinement is based on ›U/›xi (Table II and Figure 2(a)-2(c)). It is
quite difficult to say reliably which is the better choice, since near the jet axis the
refinement based on ›U/›xi approaches the grid-independent solution more quickly,
whereas near the jet edge the refinement based on k is in better agreement with the
grid-independent solution. All in all, the results from several locations and as a
function of different variables (not shown here) suggest that the refinement based on
›U/›xi performs slightly better.

The sensitivity of the solution for inlet turbulence intensity is estimated by doubling
and halving the inlet intensity used in the reference case (I ¼ 3.6 percent). The effect is
clear near the inlet, but further away in the self-similar region it is hardly noticeable
(Figure 7). The maximum predicted value of k is not much affected by the chosen inlet
values. This is explained by the fact that the production of k in the jet shear layer is the
dominating factor. Moreover, the high values of k near the jet inlet in the case of
doubled turbulence inlet intensity are quickly balanced by the correspondingly high
values of 1 (equations (6) and (15)). Although not shown here, the effect of inlet
turbulence intensity is clearly smaller on the predicted u than on k.

The development of self-similar profiles is shown in Figure 8. The profiles are clearly
not self-similar at x/d , 30, and the self-similarity of the mean velocity seems to be
achieved approximately at x/d . 50 (Figure 8(a)). Turbulence kinetic energy seems to
achieve self-similarity almost at the same distance as the mean axial velocity; at most
only a slight delay can be observed (Figure 8(b)).

Figure 9 shows that the standard k-1 model predicts a greater jet spreading rate
than the k-1 model of Shih et al. (1995). Hence, the latter model might be a better choice
in boiler modeling, as it can provide a better prediction of the jet penetration. However,
it should be noted that the turbulence model affects also the predicted reaction rates.
Figure 9 closely resembles the result obtained in Shih et al. (1995, p. 233). Here, the
predictions are not compared with measurements, but these comparisons can be found
in Shih et al. (1995, p. 233), where it is shown that the k-1 model of Shih et al. better
predicts the axisymmetric jet spreading rate than the standard k-1 model.
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Figure 10 shows different grids of tetrahedral cells and shows that only the predictions
obtained with the dense grid of tetrahedral cells are close to the grid-independent solution.
All the other differently generated grids of tetrahedral cells seriously underpredict the jet
centerline velocity and overpredict the jet spreading rate. The worst predictions (grid III)
have little, if anything, to do with the grid-independent solution. The grid generation
technique is of importance in the generation of grids of tetrahedral cells; especially too
large an initial cell size at the jet centerline or too few cells at the jet inlet are detrimental for
the solution accuracy and may even prevent obtaining a converged solution. In fact, a
converged solution was not obtained for grid V (not included in Figure 10).

Figure 6.
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It is in the face fluxes where the performance of the cell types differs essentially. The
effect of cell types can be assessed on the basis of Figures 4(a), 5, and 10. The baseline
grid of hexahedral cells seems to be superior to coarse grids of tetrahedral cells.
However, Tables II and III reveal that in a grid consisting of a certain fixed number of
cells the number of nodes is clearly smaller in a grid of tetrahedral cells than in a grid
of hexahedral cells. Hence, a comparison based on a similar number of nodes instead of
on a similar number of cells would lead to an improved performance of grids of
tetrahedral cells with respect to grids of hexahedral cells.

Figure 8.
Jet self-similarity

0 0.05 0.10 0.15 0.20 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r / x

 u
 / 

u c

 x/d = 10
 x/d = 20
 x/d = 30
 x/d = 40
 x/d = 50
 x/d = 60
 x/d = 70
 x/d = 80
 x/d = 90
 x/d = 100

0 0.05 0.10 0.15 0.20 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r / x

 k
 / 

k c

 x/d = 10
 x/d = 20
 x/d = 30
 x/d = 40
 x/d = 50
 x/d = 60
 x/d = 70
 x/d = 80
 x/d = 90
 x/d = 100

(b) Turbulence kinetic energy

Note: Very dense grid with 4,264,650 cells (every second data point shown)

(a) Mean axial velocity

HFF
19,1

110



6.3 Reactive jet exhausting into crossflow
Figure 11 shows the predicted jet penetration into crossflow as a function
of axial distance. Figure 12 shows the predicted velocity magnitude and
ammonia concentration at x/d ¼ 60 where significant jet bending has occurred.
Figure 13 shows the predicted rate of reaction NH3 þ NO ! N2 þ H2O þ ð1=2ÞH2 and
temperature at x/d ¼ 30.

As in the axisymmetric case, it can be observed that the predictions obtained with
the dense grid consisting of 2,067,424 hexahedral cells are not perfectly
grid-independent, although the difference between the dense and very dense grids is
almost negligible. Moreover, consistent with the findings of the axisymmetric jet
modeling, the following observations can be made. The local grid refinement provides
a consistent improvement in predictions. The third local grid refinement does not
improve significantly the predictions obtained after two local grid refinements. Grid I
of tetrahedral cells underpredicts the jet centerline velocity and the jet penetration,
whereas the baseline grid of hexahedral cells does the opposite (Figures 11 and 12(a)).
Grid I of tetrahedral cells overpredicts the jet spreading rate (Figure 12(a)). Although
not shown in the figures, it is also confirmed that the percentual error in the predictions
is generally either of the same magnitude or slightly greater for the turbulence kinetic
energy than for the mean velocity magnitude.

In general, unlike in the axisymmetric case, it can be observed that the baseline grid
of hexahedral cells performs as badly as grid I of tetrahedral cells. This finding can be
partially attributed to the fact that the hexahedral cells with a large edge ratio perform
poorly when the flow is not aligned with the grid lines, which is the case in crossflow. It
should be noted also that in the crossflow case the region of densest grid does not
follow the trajectory of the bending jet.

The discrepancies in the predictions of velocity magnitude and ammonia concentration
are consistent with each other and of the same magnitude, as shown in Figure 12.
Figure 13(a) shows that near the jet inlet (x/d ¼ 30) the reaction rate is highest in the jet
shear layer and that the reaction rates are greater on the wind side of the jet. Lower reaction
rates near the jet centerline are explained mainly by the lower temperature there (compare

Figure 9.
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Figure 13(a) and 13(b)). Proceeding to downwind, the temperature and the concentration of
nitric oxide increase in the jet centerline due to turbulent mixing. Consequently, downwind
(x/d . 60) the reaction rates are no longer greatest in the jet shear layer; instead the
reaction rate increases towards the jet centerline (not shown in Figure 13).

In general, errors observed in the predictions of reaction rate and of reactive
species concentrations are a consequence of the erroneous prediction of the flow field.
Here, the heat release from the reactions of ammonia is almost negligible due to the
low-ammonia concentration. It is assumed that the errors related to the prediction of
reactive flow would have been even greater if the heat release had been significant, as
is the case in the combustion of solid, liquid, and gaseous fuels.

It must be noted that the crossflow velocity profile in a real boiler is not of the
plug-flow type. As Figure 3 reveals, real jets may even encounter strong downward

Figure 10.
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velocity components near the walls of the boiler. Also, it must be noted that stronger
crossflow (or weaker jet) could have produced somewhat different results, so that the
results obtained here should be considered valid only for jets exhausting into a weak
crossflow.

7. Conclusions
In industrial-scale boiler modeling a bad quality computational grid may cause a
greater error in the predictions than the turbulence and other models used. The present
study emphasizes the fact that the grid dependency study is an essential part of every
modeling study and that the discretization error should be minimized, or at least
assessed, if any definite conclusions are to be drawn from the results. Obtaining a
perfectly grid-independent solution in industrial-scale reactive flow modeling in a
reasonable time is beyond the ability of current standard computers.

First, several grids of hexahedral cells covering the full boiler volume are generated
to show the difficulties related to judging iteration, discretization, and modeling errors
in boiler modeling. In the second stage, studies with a single jet exhausting both into a
quiescent atmosphere and into a weak crossflow are carried out to provide information
for local grid refinement at critical parts of the boiler (near jets).

It is found that, strictly speaking, over four million computational cells are required
for a single jet to obtain the grid-independent solution. However, judging somewhat
less strictly, it can be concluded that using approximately two million cells gives a
reasonably grid-independent solution for a single jet both with grids of hexahedral and
tetrahedral cells. It must be noted that the above absolute numbers of cells are
somewhat misleading indicators since not all cells are located in the jet-like part of the
flow. The local grid refinement provides a significant improvement in the predictions
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with a relatively low increase in the number of cells and computer time. Here, refining
the grid locally twice near the jets is sufficient to obtain a significant improvement.
Moreover, in the axisymmetric jet case, refinement based on the velocity gradient
performs slightly better than that based on the turbulence kinetic energy.

It is shown that a finite-volume-based solver with a relatively coarse grid of
tetrahedral cells, as typically used in industrial boiler modeling, may cause serious
errors unless the grid is generated with care and using a sufficient number of cells. The
jet spreading rate is strongly overpredicted and the mean centerline velocity is strongly
underpredicted with coarse grids of tetrahedral cells. Conversely, relatively coarse
grids of hexahedral cells overpredict the mean centerline velocity. The spreading rate
of axisymmetric jet is reasonably well predicted with coarse grids of hexahedral cells.

Figure 12.
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In general, the quality of predictions obtained with grids of hexahedral cells
deteriorates in the crossflow case, where the flow is not aligned with the grid lines.
The differences in the predictions are significant when the chemical reactions are taken
into account.

The comparison of two turbulence models shows that the k-1 model of Shih et al.
(1995) predicts a lower axisymmetric jet spreading rate than the standard k-1 model,

Figure 13.
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Industrial-scale
boiler modeling

115



which is a result consistent with the literature. The uncertainty in estimated turbulence
intensity at the jet inlet is probably not among the most critical error sources. Finally,
the predicted centerline velocity-decay trend of an axisymmetric jet is shown to be
reasonably similar to that based on the analytical correlation, but the absolute values
are not the same.
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